
18CS44
MICROCONTROLLER AND EMBEDDED SYSTEMS

MODULE – 5

RTOS AND IDE FOR EMBEDDED SYSTEMDESIGN

RTOS-BASED EMBEDDED SYSTEM DESIGN
The super loop based task execution model for firmware executes the tasks sequentially in order in which

the tasks are listed within the loop. Here every task is repeated at regular intervals and the task execution

is non-real time. Also, any response delay is acceptable and it will not create any operational issues or

potential hazards.But, certain applications demand time critical response to tasks/ events and delay in the

response may be catastrophic. Examples: Flight control systems, Air bag control, Anti-lock Brake

Systems (ABS) for vehicles, Nuclear monitoring devices, etc.

In embedded systems, the time critical response for tasks/ events may be addressed by –

 Assigning priority to tasks and execute the high priority task.

 Dynamically change the priorities of tasks, if required on a need basis.

The introduction of operating system based firmware execution in embedded devices can address these

needs to a greater extent.

OPERATING SYSTEM (OS) BASICS:

The Operating System (OS) acts as a bridge between the user applications/ tasks and the underlying

system resources through a set of system functionalities and services. The primary functions of operating

systems are

 Make the system convenient to use

 Organize and manage the system resources efficiently and correctly.

The following Figure gives an insight into the basic components of an operating system and their

interfaces with rest of the world.

Application Programming
Interface (API)

Device Driver
Interface

Figure 1: The Architecture of Operating System
Underlying Hardware

I/O System Management

File System Management

Time Management

Process Management

Memory Management

User Applications

K
er
ne

lS
er
vi
ce
s

18CS44
The Kernel:

MICROCONTROLLER AND EMBEDDED SYSTEMS

The kernel is the core of the operating system. It is responsible for managing the system resources and the

communication among the hardware and other system services. Kernel acts as the abstraction layer

between system resources and user applications.

 Kernel contains a set of system libraries and services. For a general purpose OS, the kernel

contains different services like memory management, process management, time management,

file system management, I/O system management.

Process Management: The process management deals with managing the process/ tasks. Process

management includes –

 setting up a memory for the process

 loading process code into memory

 allocating system resources

 scheduling and managing the execution of the process

 setting up and managing Process Control Block (PCB)

 inter process communication and synchronization

 process termination/ deletion, etc.

Primary Memory Management: Primary memory refers to a volatile memory (RAM), where processes

are loaded and variables and shared data are stored.

The Memory Management Unit (MMU) of the kernel is responsible for –

 Keeping a track of which part of the memory area is currently used by which process

 Allocating and De-allocating memory space on a need basis.

File System Management: File is a collection of related information. A file could be a program (source

code or executable), text files, image files, word documents, audio/ video files, etc. A file system

management service of kernel is responsible for –

 The creation, deletion and alteration of files

 Creation, deletion, and alteration of directories

 Saving of files in the secondary storage memory

 Providing automatic allocation of file space based on the amount of free running space available

 Providing flexible naming conversion for the files.

I/O System (Device) Management: Kernel is responsible for routing the I/O requests coming from

different user applications to the appropriate I/O devices of the system. In a well structured OS, direct

18CS44 MICROCONTROLLER AND EMBEDDED SYSTEMS

access to I/O devices is not allowed; access to them is establish through Application Programming

Interface (API). The kernel maintains list of all the I/O devices of the system. The service „Device

Manager‟ of the kernel is responsible for handling all I/O related operations. The Device Manager is

responsible for –

 Loading and unloading of device drivers

 Exchanging information and the system specific control signals to and from the device.

Secondary Storage Management: The secondary storage management deals with managing the

secondary storage memory devices (if any) connected to the system. Secondary memory is used as

backup medium for programs and data, as main memory is volatile. In most of the systems secondary

storage is kept in disks (hard disks). The secondary storage management service of kernel deals with –

 Disk storage allocation

 Disk scheduling

 Free disk space management

Protection Systems: Modern operating systems are designed in such way to support multiple users with

different levels of access permissions. The protection deals with implementing the security policies to

restrict the access of system resources and particular user by different application or processes and

different user.

Interrupt Handler: Kernel provides interrupt handler mechanism for all external/ internal interrupt

generated by the system.

The important services offered by the kernel of an OS:

 Kernel Space and User Space: The program code corresponding to the kernel applications/

services are kept in a contiguous area of primary (working) memory and is protected from the un-

authorized access by user programs/ applications.

o The memory space at which the kernel code is located is known as „Kernel Space‟. All
user applications are loaded to a specific area of primary memory and this memory area

is referred as „User Space‟.

o The partitioning of memory into kernel and user space is purely Operating System
dependent.

o Most of the operating systems keep the kernel application code in main memory and it is
not swapped out into the secondary memory.

18CS44 MICROCONTROLLER AND EMBEDDED SYSTEMS

Monolithic Kernel and Microkernel: Kernel forms the heart of OS. Different approaches are adopted for

building an operating system kernel. Based on the kernel design, kernels can be classified into

„Monolithic‟ and „Micro‟.

 Monolithic Kernel: In monolithic kernel architecture, all kernel services run in the kernel space.

All kernel modules run within the same memory space under a single kernel thread.

 The major drawback of monolithic kernel is that any error or failure in any one of the kernel

modules leads to the crashing of the entire kernel application.

o LINUX, SOLARIS, MS-DOS kernels are examples of monolithic kernel.

 Microkernel: The microkernel design incorporates only essential set of operating system services

into the kernel. The rest of the operating systems services are implemented in program known as

„Servers‟ which runs in user space. The memory management, timer systems and interrupt

handlers are the essential services, which forms the part of the microkernel. The benefits of micro

kernel based designs are –

o Robustness: If a problem is encountered in any of the services, which runs as a server

canbe reconfigured and restarted without the restarting the entire OS. Here chances of

corruption of kernel services are ideally zero.

o Configurability: Any services, which runs as a server application can be changed without
the need to restart the whole system. This makes the system dynamically configurable.

TYPES OF OPERATING SYSTEMS:

Depending on the type of kernel and kernel services, purpose and type of computing system, Operating

Systems are classified into different types.

18CS44 MICROCONTROLLER AND EMBEDDED SYSTEMS

General Purpose Operating System (GPOS):

The operating systems, which are deployed in general computing systems, are referred as GPOS. The

GPOSs are often quite non-deterministic in behavior.

 Windows 10/8.x/XP/MS-DOS, etc., are examples of GPIOs.

Real Time Operating System (RTOS):

Real Time implies deterministic in timing behavior.

 RTOS services consumes only known and expected amounts of time regardless the number of

services.

 RTOS implements policies and rules concerning time-critical allocation of a system‟s resources.

 RTOS decides which applications should run in which order and how much time needs to be

allocated for each application.

o Windows Embedded Compact, QNX, VxWorks MicroC/OS-II, etc., are examples of
RTOSs.

The Real-Time kernel: The kernel of a Real-Time OS is referred as Real-Time kernel. The Real-Time

kernel is highly specialized and it contains only the minimal set of services required for running user

applications/ tasks. The basic functions of a Real-Time kernel are listed below:

 Task/ Process management

 Task/ Process scheduling

 Task/ Process synchronization

 Error/ Exception handling

 Memory management

 Interrupt handling

 Time management.

 Task/ Process Management: Deals with setting up the memory space for the tasks, loading the

task‟s code into the memory space, allocating system resources and setting up a Task Control

Block (TCB) for the task and task/process termination/deletion.

o A Task Control Block (TCB) is used for holding the information corresponding to a task.
TCB usually contains the following set of information:

 Task ID: Task Identification Number

 Task State: The current state of the task. (E.g. State = „Ready‟ for a task which is

ready to execute)

18CS44 MICROCONTROLLER AND EMBEDDED SYSTEMS

 Task Type: Task type. Indicates what is the type for this task. The task can be a

hard real time or soft real time or background task.

 Task Priority: Task priority (E.g. Task priority = 1 for task with priority = 1)

 Task Context Pointer: Context pointer. Pointer for context saving

 Task Memory Pointers: Pointers to the code memory, data memory and stack

memory for the task

 Task System Resource Pointers: Pointers to system resources (semaphores,

mutex, etc.) used by the task

 Task Pointers: Pointers to other TCBs (TCBs for preceding, next and waiting

tasks)

 Other Parameters: Other relevant task parameters.

o The parameters and implementation of the TCB is kernel dependent. The TCB

parameters vary across different kernels based on the task management implementation.

 Task/ Process Scheduling: Deals with sharing the CPU among various tasks/ processes. A kernel

application called „Scheduler‟ handles the task scheduling. Scheduler is an algorithm

implementation, which performs the efficient and optimal scheduling of tasks to provide a

deterministic behavior.

 Task/ Process Synchronization: Deals with synchronizing the concurrent access of a resource,

which is shared across multiple tasks and the communication between various tasks.

 Error/ Exception Handling: Deals with registering and handling the errors occurred/

exceptions raised during the execution of tasks.

o Insufficient memory, timeouts, deadlocks, deadline missing, bus error, divide by zero,
unknown instruction execution etc, are examples of errors/exceptions.

o Errors/ Exceptions can happen at the kernel level services or at task level.
 Deadlock is an example for kernel level exception, whereas timeout is an

example for a task level exception.

 Deadlock is a situation where a set of processes are blocked because each

process is holding a resource and waiting for another resource acquired

by some other process.

 Timeouts and retry are two techniques used together. The tasks retries an

event/ message certain number of times; if no response is received after

exhausting the limit, the feature might be aborted.

o The OS kernel gives the information about the error in the form of a system call (API).

18CS44 MICROCONTROLLER AND EMBEDDED SYSTEMS

 Memory Management: The memory management function of an RTOS kernel is slightly

different compared to the General Purpose Operating Systems.

o In general, the memory allocation time increases depending on the size of the block of

memory need to be allocated and the state of the allocated memory block. RTOS

achieves predictable timing and deterministic behavior, by compromising the

effectiveness of memory allocation.

o RTOS generally uses „block‟ based memory allocation technique, instead of the usual

dynamic memory allocation techniques used by the GPOS. RTOS kernel uses blocks of

fixed size of dynamic memory and the block is allocated for a task on a need basis. The

blocks are stored in a „Free buffer Queue‟.

o Most of the RTOS kernels allow tasks to access any of the memory blocks without any

memory protection to achieve predictable timing and avoid the timing overheads. Some

commercial RTOS kernels allow memory protection as optional and the kernel enters a

fail-safe mode when an illegal memory access occurs.

o The memory management function a block of fixed memory is always allocated for tasks

on need basis and it is taken as a unit. Hence, there will not be any memory
fragmentation issues.

 Interrupt Handling: Deals with the handling of various interrupts. Interrupts inform the

processor that an external device or an associated task requires immediate attention of the CPU.

o Interrupts can be either Synchronous or Asynchronous.
 Interrupts which occurs in sync with the currently executing task is known as

Synchronous interrupts. Usually the software interrupts fall under the

Synchronous Interrupt category.

 Divide by zero, memory segmentation error etc are examples of

Synchronous interrupts.

 For synchronous interrupts, the interrupt handler runs in the same context of the

interrupting task.

 Interrupts which occurs at any point of execution of any task, and are not in sync

with the currently executing task are Asynchronous interrupts.

 Timer overflow interrupts, serial data reception/ transmission interrupts

etc., are examples for asynchronous interrupts.

 For asynchronous interrupts, the interrupt handler is usually written as separate

task (depends on OS Kernel implementation) and it runs in a different context.

Hence, a context switch happens while handling the asynchronous interrupts.

18CS44 MICROCONTROLLER AND EMBEDDED SYSTEMS

o Priority levels can be assigned to the interrupts and each interrupts can be enabled or

disabled individually. Most of the RTOS kernel implements „Nested Interrupts‟

architecture.

 Time Management: Accurate time management is essential for providing precise time reference

for all applications. The time reference to kernel is provided by a high-resolution Real Time

Clock (RTC) hardware chip (hardware timer).

o The hardware timer is programmed to interrupt the processor/ controller at a fixed rate.

This timer interrupt is referred as „Timer tick‟. The „Timer tick‟ is taken as the timing

reference by the kernel. The „Timer tick‟ interval may vary depending on the hardware

timer. Usually, the „Timer tick‟ varies in the microseconds range. The time parameters

for tasks are expressed as the multiples of the „Timer tick‟.

o The System time is updated based on the „Timer tick‟. If the System time register is 32

bits wide and the „Timer tick‟ interval is 1 microsecond, the System time register will

reset in;
232 * 10–6 / (24 * 60 * 60) = ~ 0.0497 Days = 1.19 Hours

o If the „Timer tick‟ interval is 1 millisecond, the System time register will reset in
232 * 10–3 / (24 * 60 * 60) = 49.7 Days = ~ 50 Days

o The „Timer tick‟ interrupt is handled by the „Timer Interrupt‟ handler of kernel. The
„Timer tick‟ interrupt can be utilized for implementing the following actions:

 Save the current context (Context of the currently executing task)

 Increment the System time register by one. Generate timing error and reset the

System time register if the timer tick count is greater than the maximum range

available for System time register.

 Update the timers implemented in kernel (Increment or decrement the timer

registers for each timer depending on the count direction setting for each register.

Increment registers with count direction setting = „count up‟ and decrement

registers with count direction setting = „count down‟)

 Activate the periodic tasks, which are in the idle state

 Invoke the scheduler and schedule the tasks again based on the scheduling

algorithm

 Delete all the terminated tasks and their associated data structures (TCBs)

 Load the context for the first task in the ready queue. Due to the re-scheduling,

the ready task might be changed to a new one from the task, which was pre-

empted by the „Timer Interrupt‟ task.

18CS44 MICROCONTROLLER AND EMBEDDED SYSTEMS

 Hard Real-Time: A Real Time Operating Systems which strictly adheres to the timing

constraints for a task is referred as hard real-time systems. A Hard Real Time system must meet

the deadlines for a task without any slippage. Missing any deadline may produce catastrophic

results for Hard Real Time Systems, including permanent data lose and irrecoverable damages to

the system/users.

o Hard real-time systems emphasize on the principle „A late answer is a wrong answer‟.

 For example, Air bag control systems and Anti-lock Brake Systems (ABS) of

vehicles are typical examples of Hard Real Time Systems.

o Most of the Hard Real Time Systems are automatic.

 Soft Real-Time: Real Time Operating Systems that does not guarantee meeting deadlines, but,

offer the best effort to meet the deadline are referred as soft real-time systems. Missing deadlines

for tasks are acceptable if the frequency of deadline missing is within the compliance limit of the

Quality of Service (QoS).

o Soft real-time system emphasizes on the principle „A late answer is an acceptable answer,
but it could have done bit faster‟.

o Automatic Teller Machine (ATM) is a typical example of Soft Real Time System. If the
ATM takes a few seconds more than the ideal operation time, nothing fatal happens.

TASKS, PROCESSES AND THREADS:

The term „task‟ refers to something that needs to be done. In the Operating System context, a task is

defined as the program in execution and the related information maintained by the Operating

system for the program. Task is also known as „Job‟ in the operating system context. A program or part

of it in execution is also called a „Process‟.

 The terms „Task‟, „Job‟ and „Process‟ refer to the same entity in the Operating System context

and most often they are used interchangeably.

Process:

A „Process‟ is a program, or part of it, in execution. Process is also known as an instance of a program

in execution. A process requires various system resources like CPU for executing the process, memory

for storing the code corresponding to the process and associated variables, I/O devices for information

exchange etc.

 Structure of a Processes: The concept of „Process‟ leads to concurrent execution of tasks and

thereby, efficient utilization of the CPU and other system resources. Concurrent execution is

achieved through the sharing of CPU among the processes.

18CS44 MICROCONTROLLER AND EMBEDDED SYSTEMS

o A process mimics a processor in properties and holds a set of registers, process status, a

Program Counter (PC) to point to the next executable instruction of the process, a stack

for holding the local variables associated with the process and the code corresponding to

the process. This can be visualized as shown in the following Figure.

o A process, which inherits all the properties of the CPU, can be considered as a virtual

processor, awaiting its turn to have its properties switched into the physical processor.

When the process gets its turn, its registers and Program Counter register becomes

mapped to the physical registers of the CPU.

o The memory occupied by the process is segregated into three regions namely; Stack
memory, Data memory and Code memory (Figure, shown above).

 The „Stack‟ memory holds all temporary data such as variables local to the

process.

 The „Data‟ memory holds all global data for the process.

 The „Code‟ memory contains the program code (instructions) corresponding to

the process.

o On loading a process into the main memory, a specific area of memory is allocated for

the process. The stack memory usually starts at the highest memory address from the

memory area allocated for the process.

 Process States & State Transition: The creation of a process to its termination is not a single step

operation. The process traverses through a series of states during its transition from the newly

created state to the terminated state.

o The cycle through which a process changes its state from „newly created‟ to „execution
completed‟ is known as „Process Life Cycle‟.

18CS44 MICROCONTROLLER AND EMBEDDED SYSTEMS

o The various states through which a process traverses through during a Process Life Cycle

indicates the current status of the process with respect to time and also provides

information on what it is allowed to do next.

o The transition of a process from one state to another is known as „State transition‟. The
Process states and state transition representation are shown in the following Figure.

 Created State: The state at which a process is being created is referred as

„Created State‟. The Operating System recognizes a process in the „Created

State‟ but no resources are allocated to the process.

 Ready State: The state, where a process is incepted into the memory and

awaiting the processor time for execution, is known as „Ready State‟. At this

stage, the process is placed in the „Ready list‟ queue maintained by the OS.

 Running State: The state where in the source code instructions corresponding to

the process is being executed is called „Running State‟. Running state is the state

at which the process execution happens.

 Blocked State/ Wait State: Refers to a state where a running process is

temporarily suspended from execution and does not have immediate access to

resources. The blocked state might have invoked by various conditions like- the

process enters a wait state for an event to occur (E.g. Waiting for user inputs such

18CS44 MICROCONTROLLER AND EMBEDDED SYSTEMS

as keyboard input) or waiting for getting access to a shared resource like

semaphore, mutex etc.

 Completed State: A state where the process completes its execution.

Threads:

A thread is the primitive that can execute code. A thread is a single sequential flow of control within a

process. A thread is also known as lightweight process.

 A process can have many threads of execution. Different threads, which are part of a process,

share the same address space; meaning they share the data memory, code memory and heap

memory area.

 Threads maintain their own thread status (CPU register values), Program Counter (PC) and stack.

The memory model for a process and its associated threads are given in the following figure.

 The Concept of Multithreading: The process is split into multiple threads, which executes a

portion of the process; there will be a main thread and rest of the threads will be created within

the main thread.

o The multithreaded architecture of a process can be visualized with the thread-process
diagram, shown below.

o Use of multiple threads to execute a process brings the following advantage:
 Better memory utilization: Multiple threads of the same process share the

addressspace for data memory. This also reduces the complexity of inter thread

communication since variables can be shared across the threads.

 Since the process is split into different threads, when one thread enters a wait

state, the CPU can be utilized by other threads of the process that do not require

the event, which the other thread is waiting, for processing. This speeds up the

execution of the process.

 Efficient CPU utilization. The CPU is engaged all time.

18CS44 MICROCONTROLLER AND EMBEDDED SYSTEMS

 Thread Standards: Thread standards deal with the different standards available for thread

creation and management. These standards are utilized by the Operating Systems for thread

creation and thread management. It is a set of thread class libraries. The commonly available

thread class libraries are –

o POSIX Threads: POSIX stands for Portable Operating System Interface. The POSIX.4

standard deals with the Real Time extensions and POSIX.4a standard deals with thread

extensions. The POSIX standard library for thread creation and management is

„Pthreads‟. „Pthreads‟ library defines the set of POSIX thread creation and management

functions in „C‟ language. (Example 1 – Self study).

o Win32 Threads:Win32 threads are the threads supported by various flavors of Windows

Operating Systems. The Win32 Application Programming Interface (Win32 API)

libraries provide the standard set of Win32 thread creation and management functions.

Win32 threads are created with the API.

o Java Threads: Java threads are the threads supported by Java programming Language.

The java thread class „Thread‟ is defined in the package „java.lang‟. This package needs

to be imported for using the thread creation functions supported by the Java thread class.

18CS44 MICROCONTROLLER AND EMBEDDED SYSTEMS

There are two ways of creating threads in Java: Either by extending the base „Thread‟

class or by implementing an interface. Extending the thread class allows inheriting the

methods and variables of the parent class (Thread class) only whereas interface allows a

way to achieve the requirements for a set of classes.

 Thread Pre-emption: Thread pre-emption is the act of pre-empting the currently running thread

(stopping temporarily). It is dependent on the Operating System. It is performed for sharing the

CPU time among all the threads. The execution switching among threads are known as „Thread

context switching‟. Threads falls into one of the following types:

o User Level Thread: User level threads do not have kernel/ Operating System support and

they exist only in the running process. A process may have multiple user level threads;

but the OS threats it as single thread and will not switch the execution among the

different threads of it. It is the responsibility of the process to schedule each thread as and

when required. Hence, user level threads are non-preemptive at thread level from OS

perspective.

o Kernel Level/ System Level Thread: Kernel level threads are individual units of

execution, which the OS treats as separate threads. The OS interrupts the execution of the

currently running kernel thread and switches the execution to another kernel thread based

on the scheduling policies implemented by the OS.

 The execution switching (thread context switching) of user level threads happen

only when the currently executing user level thread is voluntarily blocked.

Hence, no OS intervention and system calls are involved in the context switching

of user level threads. This makes context switching of user level threads very

fast.

 Kernel level threads involve lots of kernel overhead and involve system calls for

context switching. However, kernel threads maintain a clear layer of abstraction

and allow threads to use system calls independently.

 There are many ways for binding user level threads with kernel/ system level

threads; which are explained below:

 Many-to-One Model: Many user level threads are mapped to a single

kernel thread. The kernel treats all user level threads as single thread and

the execution switching among the user level threads happens when a

currently executing user level thread voluntarily blocks itself or

relinquishes the CPU. Solaris Green threads and GNU Portable Threads

are examples for this.

18CS44 MICROCONTROLLER AND EMBEDDED SYSTEMS

 One-to-One Model: Each user level thread is bonded to a kernel/ system

level thread. Windows XP/NT/2000 and Linux threads are examples of

One-to-One thread models.

 Many-to-Many Model: In this model many user level threads are allowed

to be mapped to many kernel threads. Windows NT/2000 with

ThreadFiber package is an example for this.

 Thread versus Process:

Thread Process
Thread is a single unit of execution and is part of

process.

Process is a program in execution and contains one

or more threads.

A thread does not have its own data memory and

heap memory.

Process has its own code memory, data memory,

and stack memory.
A thread cannot live independently; it lives within

the process.
A process contains at least one thread.

There can be multiple threads in a process; the first

(main) thread calls the main function and occupies

the start of the stack memory of the process.

Threads within a process share the code, data and heap

memory; each thread holds separate memory

area for stack.

Threads are very inexpensive to create.
Processes are very expensive to create; involves many OS
overhead.

Context switching is inexpensive and fast.
Context switching is complex and involves lots of

OS overhead and comparatively slow.

If a thread expires, its stack is reclaimed by the

process.

If a process dies, the resource allocated to it are reclaimed

by the OS and all associated threads of

the process also dies.

MULTIPROCESSING ANDMULTITASKING:

The ability to execute multiple processes simultaneously is referred as multiprocessing. Systems which

are capable of performing multiprocessing are known as multiprocessor systems.

 Multiprocessor systems possess multiple CPUs and can execute multiple processes

simultaneously.

 The ability of the Operating System to have multiple programs in memory, which are ready for

execution, is referred as Multi programming. In a uni-processor system, it is not possible to

execute multiple processes simultaneously.

Multitasking refers to the ability of an operating system to hold multiple processes in memory and switch

the processor (CPU) from executing one process to another process.

18CS44 MICROCONTROLLER AND EMBEDDED SYSTEMS

 Multitasking involves „Context switching‟ (see the following Figure), „Context saving‟ and

„Context retrieval‟.

o The act of switching CPU among the processes or changing the current execution context
is known as „Context switching‟.

o The act of saving the current context (details like Register details, Memory details,

System Resource Usage details, Execution details, etc.) for the currently running

processes at the time of CPU switching is known as „Context saving‟.

o The process of retrieving the saved context details for a process, which is going to be
executed due to CPU switching, is known as „Context retrieval‟.

Types of Multitasking:

Depending on how the task/ process execution switching act is implemented, multitasking can is

classified into –

 Co-operative Multitasking: Co-operative multitasking is the most primitive form of multitasking

in which a task/ process gets a chance to execute only when the currently executing task/ process

voluntarily relinquishes the CPU. In this method, any task/ process can avail the CPU as much

time as it wants. Since this type of implementation involves the mercy of the tasks each other for

getting the CPU time for execution, it is known as co-operative multitasking. If the currently

executing task is non-cooperative, the other tasks may have to wait for a long time to get the

CPU.

18CS44 MICROCONTROLLER AND EMBEDDED SYSTEMS

 Preemptive Multitasking: Preemptive multitasking ensures that every task/ process gets a chance

to execute. When and how much time a process gets is dependent on the implementation of the

preemptive scheduling. As the name indicates, in preemptive multitasking, the currently running

task/process is preempted to give a chance to other tasks/process to execute. The preemption of

task may be based on time slots or task/ process priority.

 Non-preemptive Multitasking: The process/ task, which is currently given the CPU time, is

allowed to execute until it terminates (enters the „Completed‟ state) or enters the „Blocked/ Wait‟

state, waiting for an I/O. The co-operative and non-preemptive multitasking differs in their

behavior when they are in the „Blocked/Wait‟ state. In co-operative multitasking, the currently

executing process/task need not relinquish the CPU when it enters the „Blocked/ Wait‟ sate,

waiting for an I/O, or a shared resource access or an event to occur whereas in non-preemptive

multitasking the currently executing task relinquishes the CPU when it waits for an I/O.

TASK COMMUNICATION:

In a multitasking system, multiple tasks/ processes run concurrently (in pseudo parallelism) and each

process may or may not interact between. Based on the degree of interaction, the processes/ tasks running

on an OS are classified as –

 Co-operating Processes: In the co-operating interaction model, one process requires the inputs

from other processes to complete its execution.

 Competing Processes: The competing processes do not share anything among themselves but

they share the system resources. The competing processes compete for the system resources such

as file, display device, etc.

o The co-operating processes exchanges information and communicate through the
following methods:

 Co-operation through sharing: Exchange data through some shared resources.

 Co-operation through Communication: No data is shared between the processes.

But they communicate for execution synchronization.

The mechanism through which tasks/ processes communicate each other is known as Inter Process/ Task

Communication (IPC). IPC is essential for process co-ordination. The various types of IPC mechanisms

adopted by process are kernel (Operating System) dependent. They are explained below.

IPC Mechanism - Shared Memory:

Processes share some area of the memory to communicate among them (see the following Figure).

Information to be communicated by the process is written to the shared memory area. Processes which

require this information can read the same from the shared memory area.

18CS44 MICROCONTROLLER AND EMBEDDED SYSTEMS

 The implementation of shared memory is kernel dependent. Different mechanisms are adopted by

different kernels for implementing this, a few among are s follows:

1. Pipes: „Pipe‟ is a section of the shared memory used by processes for communicating. Pipes

follow the client-server architecture. A process which creates a pipe is known as pipe server

and a process which connects to a pipe is known as pipe client. A pipe can be considered as a

medium for information flow and has two conceptual ends. It can be unidirectional, allowing

information flow in one direction or bidirectional allowing bi-directional information flow. A

unidirectional pipe allows the process connecting at one end of the pipe to write to the pipe

and the process connected at the other end of the pipe to read the data, whereas a bi-

directional pipe allows both reading and writing at one end. The unidirectional pipe can be

visualized as

o The implementation of „Pipes‟ is OS dependent. Microsoft® Windows Desktop

Operating Systems support two types of „Pipes‟ for Inter Process Communication.
Namely;

o Anonymous Pipes: The anonymous pipes are unnamed, unidirectional pipes used for
data transfer between two processes.

o Named Pipes: Named pipe is a named, unidirectional or bi-directional pipe for data

exchange between processes. Like anonymous pipes, the process which creates the

named pipe is known as pipe server. A process which connects to the named pipe is

known as pipe client. With named pipes, any process can act as both client and server

allowing point-to-point communication. Named pipes can be used for communicating

between processes running on the same machine or between processes running on

different machines connected to a network.

2. Memory Mapped Objects:Memory mapped object is a shared memory technique adopted by

certain Real Time Operating Systems for allocating a shared block of memory which can be

accessed by multiple process simultaneously. In this approach, a mapping object is created

and physical storage for it is reserved and committed. A process can map the entire

committed physical area or a block of it to its virtual address space. All read and write

operation to this virtual address space by a process is directed to its committed physical area.

18CS44 MICROCONTROLLER AND EMBEDDED SYSTEMS

Any process which wants to share data with other processes can map the physical memory

area of the mapped object to its virtual memory space and use it for sharing the data. The

concept of memory mapped object is shown bellow.

IPC Mechanism - Message Passing:

Message passing is a/ an synchronous/ asynchronous information exchange mechanism for Inter Process/

Thread Communication. The major difference between shared memory and message passing technique is

 Through shared memory lots of data can be shared whereas only limited amount of info/ data is

passed through message passing.

 Message passing is relatively fast and free from the synchronization overheads compared to

shared memory.

Based on the message passing operation between the processes, message passing is classified into –

1. Message Queues: Process which wants to talk to another process posts the message to a

First-In-First-Out (FIFO) queue called „Message queue‟, which stores the messages

temporarily in a system defined memory object, to pass it to the desired process. Messages

are sent and received through send (Name of the process to which the message is to be sent,

message) and receive (Name of the process from which the message is to be received,message)

methods. The messages are exchanged through a message queue. The implementation of the

message queue, send and receive methods are OS kernel dependent.

18CS44 MICROCONTROLLER AND EMBEDDED SYSTEMS

2. Mailbox: Mailbox is a special implementation of message queue. Usually used for one way

communication, only a single message is exchanged through mailbox whereas „message

queue‟ can be used for exchanging multiple messages. One task/process creates the mailbox

and other tasks/process can subscribe to this mailbox for getting message notification. The

implementation of the mailbox is OS kernel dependent. The MicroC/ OS-II RTOS

implements mailbox as a mechanism for inter task communication

3. Signalling: Signals are used for an asynchronous notification mechanism. The signal mainly

used for the execution synchronization of tasks process/ tasks. Signals do not carry any data

and are not queued. The implementation of signals is OS kernel dependent and VxWorks

RTOS kernel implements „signals‟ for inter process communication.

18CS44 MICROCONTROLLER AND EMBEDDED SYSTEMS

IPC Mechanism - Remote Procedure Call (IPC) and Sockets: Remote Procedure Call is the Inter

Process Communication (IPC) mechanism used by a process, to call a procedure of another process

running on the same CPU or on a different CPU which is interconnected in a network. In the object

oriented language terminology, RPC is also known as Remote Invocation or Remote Method Invocation

(RMI). The CPU/ process containing the procedure which needs to be invoked remotely is known as

server. The CPU/ process which initiates an RPC request is known as client.

 In order to make the RPC communication compatible across all platforms, it should stick on to

certain standard formats.

 Interface Definition Language (IDL) defines the interfaces for RPC. Microsoft Interface

Definition Language (MIDL) is the IDL implementation from Microsoft for all Microsoft

platforms.

 The RPC communication can be either Synchronous (Blocking) or Asynchronous (Non-

blocking).

Sockets are used for RPC communication. Socket is a logical endpoint in a two-way communication link

between two applications running on a network. A port number is associated with a socket so that the

network layer of the communication channel can deliver the data to the designated application. Sockets

are of different types namely; Internet sockets (INET), UNIX sockets, etc.

 The INET Socket works on Internet Communication protocol. TCP/ IP, UDP, etc., are the

communication protocols used by INET sockets.

 INET sockets are classified into:

o Stream Sockets: are connection oriented and they use TCP to establish a reliable
connection.

o Datagram Sockets: rely on UDP for establishing a connection.

18CS44 MICROCONTROLLER AND EMBEDDED SYSTEMS

TASK SYNCHRONIZATION:

In a multitasking environment, multiple processes run concurrently and share the system resources. Also,

each process may communicate with each other with different IPC mechanisms. Hence, there may be

situations that; two processes try to access a shared memory area, where one process tries to write to the

memory location when the other process is trying to read from the same memory location. This will lead

to unexpected results.

The solution is, make each process aware of access of a shared resource. The act of making the processes

aware of the access of shared resources by each process to avoid conflicts is known as “Task/ Process

Synchronization”.

Task/ Process Synchronization is essential for –

1. Avoiding conflicts in resource access (racing, deadlock, etc.) in multitasking environment.

2. Ensuring proper sequence of operation across processes.

3. Establish proper communication between processes.

The code memory area which holds the program instructions (piece of code) for accessing a shared

resource is known as „Critical Section‟. In order to synchronize the access to shared resources, the access

to the critical section should be exclusive.

Task Communication/ Synchronization Issues:

Various synchronization issues may arise in a multitasking environment, if processes are not

synchronized properly in shared resource access, such as:

1. Racing: Look into the following piece of code:

#include <stdio.h>

//**

//counter is an integer variable and Buffer is a byte array shared

//between two processes Process A and Process B.

char Buffer [10] = {1,2,3,4,5,6,7,8,9,10};

short int counter = 0;

//**

// Process A

Void Process_A (void)

{

int i;

for (i =0; i<5; i++)

{

if (Buffer [i] > 0)

18CS44 MICROCONTROLLER AND EMBEDDED SYSTEMS

counter++;

}

}

// Process B

Void Process_B (void)

{

int j;

for (j =5; j<10; j++)

{

if (Buffer[j] > 0)

counter++;

}

}

//Main Thread.

int main()

{

DWORD id;

CreateThread

(LPVOID) 0, 0, &id);

(NULL, 0, (LPTHREAD_START_ROUTINE) Process_A,

CreateThread
(LPVOID) 0, 0, &id);

(NULL, 0, (LPTHREAD_START_ROUTINE) Process_B,

Sleep (100000);

return 0;

}

 From a programmer perspective, the value of counter will be 10 at the end of execution of

processes A & B. But it need not be always.

o The program statement counter++; looks like a single statement from a high level

programming language (C Language) perspective. The low level implementation of this

statement is dependent on the underlying processor instruction set and the (cross) compiler in

use. The low level implementation of the high level program statement counter++; under

Windows XP operating system running on an Intel Centrino Duo processor is given below.

mov eax, dword ptr [ebp-4] ;Load counter in Accumulator

add eax, 1 ; Increment Accumulator by 1

mov dword ptr [ebp-4], eax ;Store counter with Accumulator

18CS44 MICROCONTROLLER AND EMBEDDED SYSTEMS

o At the processor instruction level, the value of the variable counter is loaded to the

Accumulator register (EAX Register). The memory variable counter is represented using a

pointer. The base pointer register (EBP Register) is used for pointing to the memory variable

counter. After loading the contents of the variable counter to the Accumulator, the

Accumulator content is incremented by one using the add instruction. Finally the content of

Accumulator is loaded to the memory location which represents the variable counter. Both

the processes; Process A and Process B contain the program statement counter++;

Translating this into the machine instruction.

Process
A

Process B

mov eax,dword ptr [ebp-4]

add eax, 1

mov dword ptr [e bp-4], eax

mov eax, dword ptr [ebp-4]

add eax, 1

mov dword ptr [ebp-4], eax

o Imagine a situation where a process switching (context switching) happens from Process A to

Process B when Process A is executing the counter++; statement. Process A accomplishes

the counter++; statement through three different low level instructions. Now imagine that the

process switching happened at the point, where Process A executed the low level instruction

mov eax, dword ptr [ebp-4] and is about to execute the next instruction add eax, 1. The

scenario is illustrated in the following Figure.

o Process B increments the shared variable „counter‟ in the middle of the operation where

Process A tries to increment it. When Process A gets the CPU time for execution, it starts

from the point where it got interrupted (If Process B is also using the same registers eax and

ebp for executing counter++; instruction, the original content of these registers will be saved

as part of context saving and it will be retrieved back as part of the context retrieval, when

Process A gets the CPU for execution. Hence the content of eax and ebp remains intact

irrespective of context switching). Though the variable counter is incremented by Process B,

18CS44 MICROCONTROLLER AND EMBEDDED SYSTEMS

Process A is unaware of it and it increments the variable with the old value. This leads to the

loss of one increment for the variable counter.

2. Deadlock: Deadlock is the condition in which a process is waiting for a resource held by another

process which is waiting for a resource held by the first process; hence, none of the processes are

able to make any progress in their execution.

o Process A holds a resource „x‟ and it wants a resource „y‟ held by Process B. Process B is
currently holding resource „y‟ and it wants the resource „x‟ which is currently held by Process

A. Both hold the respective resources and they compete each other to get the resource held by

the respective processes.

o Conditions Favoring Deadlock:
 Mutual Exclusion: The criteria that only one process can hold a resource at a time.

Meaning processes should access shared resources with mutual exclusion. Typical

example is the accessing of display device in an embedded device.

 Hold & Wait: The condition in which a process holds a shared resource by acquiring

the lock controlling the shared access and waiting for additional resources held by

other processes.

 No Resource Preemption: The criteria that Operating System cannot take back a

resource from a process which is currently holding it and the resource can only be

released voluntarily by the process holding it.

 Circular Wait: A process is waiting for a resource which is currently held by another

process which in turn is waiting for a resource held by the first process. In general

there exists a set of waiting process P0, P1 …. Pn with P0 is waiting for a resource

held by P1 and P1 is waiting for a resource held by P0, ……,Pn is waiting for a

resource held by P0 and P0 is waiting for a resource held by Pn and so on… This

forms a circular wait queue.

o Handling Deadlock: The OS may adopt any of the following techniques to detect and
prevent deadlock conditions.

18CS44 MICROCONTROLLER AND EMBEDDED SYSTEMS

 Ignore Deadlocks: Always assume that the system design is deadlock free. This is

acceptable for the reason the cost of removing a deadlock is large compared to the

chance of happening a deadlock. UNIX is an example for an OS following this

principle. A life critical system cannot pretend that it is deadlock free for any reason.

 Detect and Recover: This approach suggests the detection of a deadlock situation and

recovery from it.

 This is similar to the deadlock condition that may arise at a traffic junction.

When the vehicles from different directions compete to cross the junction,

deadlock (traffic jam) condition is resulted. Once a deadlock (traffic jam) is

happened at the junction, the only solution is to back up the vehicles from

one direction and allow the vehicles from opposite direction to cross the

junction. If the traffic is too high, lots of vehicles may have to be backed up

to resolve the traffic jam. This technique is also known as „back up cars‟

technique.

 Operating Systems keep a resource graph in their memory. The resource

graph is updated on each resource request and release. A deadlock condition

can be detected by analyzing the resource graph by graph analyzer

algorithms. Once a deadlock condition is detected, the system can terminate a

process or preempt the resource to break the deadlocking cycle.

o Avoid Deadlocks: Deadlock is avoided by the careful resource allocation techniques by the

Operating System. It is similar to the traffic light mechanism at junctions to avoid the traffic

jams.

o Prevent Deadlocks: Prevent the deadlock condition by negating one of the four conditions
favoring the deadlock situation.

o Ensure that a process does not hold any other resources when it requests a resource. This can

be achieved by implementing the following set of rules/ guidelines in allocating resources to

processes.

1. A process must request all its required resource and the resources should be allocated

before the process begins its execution.

2. Grant resource allocation requests from processes only if the process does not hold a

resource currently.

o Ensure that resource preemption (resource releasing) is possible at operating system level.

This can be achieved by implementing the following set of rules/ guidelines in resources

allocation and releasing:

1. Release all the resources currently held by a process if a request made by the process for

a new resource is not able to fulfill immediately.

18CS44 MICROCONTROLLER AND EMBEDDED SYSTEMS

2. Add the resources which are preempted (released) to a resource list describing the

resources which the process requires to complete its execution.

3. Reschedule the process for execution only when the process gets its old resources and the

new resource which is requested by the process.

Task Synchronization Techniques:

The technique used for task synchronization in a multitasking environment is mutual exclusion. Mutual

exclusion blocks a process. Based on the behavior of blocked process, mutual exclusion methods can be

classified into two categories: Mutual exclusion through busy waiting/ spin lock & Mutual exclusion

through sleep & wakeup.

 Semaphore: Semaphore is a sleep and wakeup based mutual exclusion implementation for shared

resource access. Semaphore is a system resource; and a process which wants to access the shared

resource can first acquire this system object to indicate the other processes which wants the

shared resource that the shared resource is currently in use by it.

 The resources which are shared among a process can be either for exclusive use by a process or

for using by a number of processes at a time.

 The display device of an embedded system is a typical example of a shared resource which needs

exclusive access by a process. The Hard disk (secondary storage) of a system is a typical example

for sharing the resource among a limited number of multiple processes.

 Based on the implementation, Semaphores can be classified into Binary Semaphore and

Counting Semaphore.

18CS44 MICROCONTROLLER AND EMBEDDED SYSTEMS

o Binary Semaphore: Implements exclusive access to shared resource by allocating the

resource to a single process at a time and not allowing the other processes to access it

when it is being used by a process.

 „Only one process/ thread‟ can own the binary semaphore at a time.

 The state of a „binary semaphore‟ object is set to signaled when it is not owned

by any process/ thread, and set to non-signaled when it is owned by any process/

thread.

 The implementation of binary semaphore is OS kernel dependent. Under certain

OS kernel it is referred as mutex.

o Counting Semaphore: Maintains a count between zero and a maximum value. It limits
the usage of resource by a fixed number of processes/ threads.

o The count associated with a „Semaphore object‟ is decremented by one when a process/
thread acquires it and the count is incremented by one when a process/ thread releases the

„Semaphore object‟.

o The state of the counting semaphore object is set to „signaled‟ when the count of the
object is greater than zero.

o The state of the „Semaphore object‟ is set to non-signaled when the semaphore is

acquired by the maximum number of processes/ threads that the semaphore can support

(i.e. when the count associated with the „Semaphore object‟ becomes zero).

o The creation and usage of „counting semaphore object‟ is OS kernel dependent.

18CS44 MICROCONTROLLER AND EMBEDDED SYSTEMS

HOWTO CHOOSE AN RTOS:

The decision of choosing an RTOS for an embedded design is very crucial. A lot of factors need to be

analyzed carefully before making a decision on the selection of an RTOS. These factors can be either

functional or non-functional.

Functional Requirements:

 Processor Support: It is not necessary that all RTOS‟s support all kinds of processor architecture.

It is essential to ensure the processor support by the RTOS.

 Memory Requirements: The OS requires ROM memory for holding the OS files and it is

normally stored in a non-volatile memory like FLASH. OS also requires working memory RAM

for loading the OS services. Since embedded systems are memory constrained, it is essential to

evaluate the minimal ROM and RAM requirements for the OS under consideration.

 Real-time Capabilities: It is not mandatory that the operating system for all embedded systems

need to be Real-time and all embedded Operating systems-are 'Real-time' in behavior. The task/

process scheduling policies play an important role in the 'Real-time' behavior of an OS. Analyze

the real-time capabilities of the OS under consideration and the standards met by the operating

system for real-time capabilities.

 Kernel and Interrupt Latency: The kernel of the OS may disable interrupts while executing

certain services and it may lead to interrupt latency. For an embedded system whose response

requirements are high, this latency should be minimal.

 Inter Process Communication and Task Synchronization: The implementation of Inter Process

Communication and Synchronization is OS kernel dependent. Certain kernels may provide a

bunch of options whereas others provide very limited options. Certain kernels implement policies

for avoiding priority inversion issues in resource sharing.

 Modularization Support: Most of the operating systems provide a bunch of features. At times it

may not be necessary for an embedded product for its functioning. It is very useful if the OS

supports moclularisation where in which the developer can choose the essential modules and re-

compile the OS image for functioning. Windows CE is an example for a highly modular

operating system.

 Support for Networking and Communication: The OS kernel may provide stack implementation

and driver support for a bunch of communication interfaces and networking. Ensure that the OS

under consideration provides support for all the interfaces required by the embedded product.

 Development Language Support: Certain operating systems include the run time libraries

required for running applications written in languages like Java and C#. A Java Virtual Machine

(JVM) customized for the Operating System is essential for running java applications. Similarly

18CS44 MICROCONTROLLER AND EMBEDDED SYSTEMS

the .NET Compact Framework (.NETCF) is required for running Microsoft .NET applications on

top of the Operating System. The OS may include these components as built-in component, if

not; check the availability of the same from a third party vendor or the OS under consideration.

Non-functional Requirements:

 Custom Developed or Off the Shelf: Depending on the OS requirement, it is possible to go for the

complete development of an operating system suiting the embedded system needs or use an off

the shelf, readily available operating system, which is either a commercial product or an Open

Source product, which is in close match with the system requirements. Sometimes it may be

possible to build the required features by customizing an Open source OS. The decision on which

to select is purely de• pendent on the development cost, licensing fees for the OS, development

time and availability of skilled resources.

 Cost: The total cost for developing or buying the OS and maintaining it in terms of commercial

product and custom build needs to be evaluated before taking a decision on the selection of OS.

 Development and Debugging Tools Availability: The availability of development and debugging

tools is a critical decision making factor in the selection of an OS for embedded design. Certain

Operating Systems may be superior in performance, but the availability of tools for supporting

the development may be limited. Explore the different tools available for the OS under

consideration.

 Ease of Use: How easy it is to use a commercial RTOS is another important feature that needs to

be considered in the RTOS selection.

 After Sales: For a commercial embedded RTOS, after sales in the fom1 of e-mail, on-call services

etc., for bug fixes, critical patch updates and support for production issues, etc., should be

analyzed thoroughly.

INTREGRATION AND TESTING OF EMBEDDED HARDWARE AND FIRMWARE

Integration testing of the embedded hardware and firmware is the immediate step following the

embedded hardware and firmware development.

 The final embedded hardware constitute of a PCB with all necessary components affixed to it as

per the original schematic diagram.

 Embedded firmware represents the control algorithm and configuration data necessary to

implement the product requirements on the product. Embedded firmware will be in a target

processor/ controller understandable format called machine language (sequence of ls and 0s-

Binary).

18CS44 MICROCONTROLLER AND EMBEDDED SYSTEMS

 The target embedded hardware without embedding the firmware is a dumb device and cannot

function properly. If you power up the hardware without embedding the firmware, the device may

behave in an unpredicted manner.

 Both embedded hardware and firmware should be independently tested (Unit Tested) to ensure

their proper functioning.

 Functioning of individual hardware sections can be done by writing small utilities which checks

the operation of the specified part.

 The functionalities of embedded firmware can easily be checked by the simulator environment

provided by the embedded firmware development tool's IDE. By simulating the firmware, the

memory contents, register details, status of various flags and registers can easily be monitored

and it gives an approximate picture of "What happens inside the processor/ controller and what

are the states of various peripherals" when the firmware is running on the target hardware. The

IDE gives necessary support for simulating the various inputs required from the external world,

like inputting data on ports, generating an interrupt condition, etc.

INTEGRATIONOFHARDWARE AND FIRMWARE:

Integration of hardware and firmware deals with the embedding of firmware into the target hardware

board. It is the process of 'Embedding Intelligence' to the product.

 The embedded processors/ controllers used in the target board may or may not have built in code

memory. For non-operating system based embedded products, if the processor/ controller contain

internal memory and the total size of the firmware is fitting into the code memory area, the code

memory is downloaded into the target controller/ processor.

 If the processor/ controller does not support built in code memory or the size of the firmware is

exceeding the memory size supported by the target processor/ controller, an external dedicated

EPROM/ FLASH memory chip is used for holding the firmware. This chip is interfaced to the

processor/ controller.

A variety of techniques are used for embedding the firmware into the target board. The commonly used

firmware embedding techniques for a non-OS based embedded system are explained below. The non-OS

based embedded systems store the firmware either in the on-chip processor/ controller memory or off-

chip memory (FLASHI/ NVRAM, etc.).

Out-of-Circuit Programming:

Out-of-circuit programming is performed outside the target board. The processor or memory chip into

which the firmware needs to be embedded is taken out of the target board and it is programmed with the

help of a programming device.

18CS44 MICROCONTROLLER AND EMBEDDED SYSTEMS

The programming device is a dedicated unit which contains the necessary hardware circuit to generate the

programming signals. Most of the programming devices available in the market are capable of

programming different family of devices.

The programming device will be under the control of a utility program running on a PC. Usually the

programming device is interfaced to the PC through RS-232C/USB/Parallel Port Interface. The

commands to control the programmer are sent from the utility program to the programmer through the

interface (see the following Figure).

The sequence of operations for embedding the firmware with a programmer is listed below:

1. Connect the programming device to the specified port of PC (USB/COM port/Parallel port)

2. Power up the device (Most of the programmers incorporate LED to indicate Device power up.

Ensure that the power indication LED is ON)

3. Execute the programming utility on the PC and ensure proper connectivity is established between

PC and programmer. In case of error turn off device power and try connecting it again

4. Unlock the ZIF socket by turning the lock pin

5. Insert the device to be programmed into the open socket as per the insert diagram shown on the

programmer

6. Lock the ZIF socket

7. Select the device name from the list of supported devices

8. Load the hex file which is to be embedded into the device

9. Program the device by 'Program' option of utility program

10. Wait till the completion of programming operation (Till busy LED of programmer is off)

11. Ensure that programming is success by checking the status LED on the programmer (Usually

'Green' for success and 'Red' for error condition) or by noticing the feedback from the utility

program

12. Unlock the ZIF socket and d take the device out of programmer.

18CS44 MICROCONTROLLER AND EMBEDDED SYSTEMS

Now the firmware is successfully embedded into the device. Insert the device into the board, power up the

board and test it for the required functionalities. It is to be noted that the most of programmers support

only Dual Inline Package (DIP) chips, since its ZIF socket is designed to accommodate only DIP chips.

Option for setting firmware protection will be available on the programming utility. If you really want the

firmware to be protected against unwanted external access, and if the device is supporting memory

protection, enable the memory protection on the utility before programming the device.

The programmer usually erases the existing content of the chip before programming the chip. Only

EEPROM and FLASH memory chips are erasable by the programmer.

The major drawback of out-of-circuit programming is the high development time. Whenever the firmware

is changed, the chip should be taken out of the development board for re-programming. This is tedious

and prone to chip damages due to frequent insertion and removal.

The out-of-system programming technique is used for firmware integration for low end embedded

products which runs without an operating system. Out-of-circuit programming is commonly used for

development of low volume products and Proof of Concept (PoC) product Development.

In System Programming (ISP):

With ISP, programming is done 'within the system', meaning the firmware is embedded into the target

device without removing it from the target board. It is the most flexible and easy way of firmware

embedding. The only pre-requisite is that the target device must have an ISP support. Apart from the

target board, PC, ISP cable and ISP utility, no other additional hardware is required for ISP.

The target board can be interfaced to the utility program running on PC through Serial Port/ Parallel Port/

USB. The communication between the target device and ISP will be in a serial format. The serial

protocols used for ISP may be 'Joint Test Act Group (JTAG)' or 'Serial Peripheral Interface (SPI)' or any

other proprietary protocol.

In System Programming with SPI Protocol: Devices with SPI (Serial Peripheral Interface) ISP (In

System Programming) support contains a built-in SPI interface and the on-chip EEPROM or FLASH

memory. The primary I/O lines involved in SPI-In System Programming are listed below:

MOSI – Master Out Slave In

MISO – Master In Slave Out

SCK – System Clock

RST – Reset of Target Device

GND – Ground of Target Device

PC acts as the master and target device acts as the slave in ISP. The program data is sent to the MOSI pin

of target device and the device acknowledgement is originated from the MISO pin of the device. SCK pin

18CS44 MICROCONTROLLER AND EMBEDDED SYSTEMS

acts as the clock for data transfer. A utility program can be developed on the PC side to generate the

above signal lines.

Standard SPI-ISP utilities are feely available on the internet and, there is no need for going for writing

own program. For ISP operations, the target device needs to be powered up in a pre-defined sequence.

The power up sequence for In System Programming for Atmel's AT89S series microcontroller family is

listed below:

1. Apply supply voltage between VCC and GND pins of target chip

2. Set RST pin to "HIGH" state

3. If a crystal is not connected across pins XTAL 1 and XTAL2, apply a 3 MHz to 24 MHz clock to

XTALl pin and wait for at least 10 milliseconds

4. Enable serial programming by sending the Programming Enable serial instruction to pin MOSI/

Pl.5. The frequency of the shift clock supplied at pin SCK/ P1.7 needs to be less than the CPU

clock at XTALl divided by 40

5. The Code or Data array is programmed one byte at a time by supplying the address and data

together with the appropriate Write instruction. The selected memory location is first erased

before the new data is written. The write cycle is self-timed and typically takes less than 2.5 ms at

5V

6. Any memory location can be verified by using the Read instruction, which returns the content at

the selected address at serial output MISO/ Pl.6

7. After successfully programming the device, set RST pin low or turn off the chip power supply

and turn it ON to commence the normal operation.

The key player behind ISP is a factory programmed memory (ROM) called 'Boot ROM‟. The Boot ROM

normally resides at the top end of code memory space and it varies in the order of a few Kilo Bytes (For a

controller with 64K code memory space and lK Boot ROM, the Boot ROM resides at memory location

FC00H to FFFFH). It contains a set of Low-level Instruction APIs and these APIs allow the processor/

controller to perform the FLASH memory programming, erasing and Reading operations. The contents of

the Boot ROM are provided by the chip manufacturer and the same is masked into every device.

In Application Programming (IAP):

In Application Programming is a technique used by the firmware running on the target device for

modifying a selected portion of the code memory. It is not a technique for first time embedding of user

written firmware. It modifies the program code memory under the control of the embedded application.

Updating calibration data, look-up tables, etc., which are stored in code memory, are typical examples of

IAP.

18CS44 MICROCONTROLLER AND EMBEDDED SYSTEMS

Use of Factory Programmed Chip:

It is possible to embed the firmware into the target processor/ controller memory at the time of chip

fabrication itself. Such chips are known as 'Factory Programmed Chips'. Once the firmware design is

over and the firmware achieved operational stability, the firmware files can be sent to the chip fabricator

to embed it into the code memory.

Factory programmed chips are convenient for mass production applications and it greatly reduces the

product development time. It is not recommended to use factory programmed chips for development

purpose where the firmware undergoes frequent changes. Factory programmed ICs are bit expensive.

Firmware Loading for Operating System Based Devices:

The OS based embedded systems are programmed using the In System Programming (ISP) technique. OS

based embedded systems contain a special piece of code called 'Boot loader' program which takes control

of the OS and application firmware embedding and copying of the OS image to the RAM of the system

for execution.

The 'Boot 1oader' for such embedded systems comes as pre-loaded or it can be loaded to the memory

using the various interface supported like JTAG. The boot loader contains necessary driver initialization

implementation for initializing the supported interfaces like UART/ I2C, TCP/ IP, etc. Boot loader

implements menu options for selecting the source for OS image to load (Typical menu item examples are

Load from FLASH ROM, Load from Network, Load through UART, etc).

Once a communication link is established between the host and target machine, the OS image can be

directly downloaded to the FLASH memory of the target device.

BOARD BRING UP:

Once the firmware is embedded into the target board using one of the programming techniques, then

power up the board. You may be expecting the device functioning exactly in a way as you designed. But

in real scenario it need not be and if the board functions well in the first attempt itself you are very lucky.

Sometimes the first power up may end up in a messy explosion leaving the smell of burned components

behind. It may happen due to various reasons, like Proper care was not taken in applying the power and

power applied in reverse polarity (+ve of supply connected to –ve of the target board and vice versa),

components were not placed in the correct polarity order (E.g. a capacitor on the target board is connected

to the board with +ve terminal to –ve of the board and vice versa), etc ... etc ...

The prototype/ evaluation/ production version must pass through a varied set of tests to verify that

embedded hardware and firmware functions as expected. Bring up process includes –

18CS44 MICROCONTROLLER AND EMBEDDED SYSTEMS

 basic hardware spot checks/ validations to make sure that the individual components and busses/

interconnects are operational – which involves checking power, clocks, and basic functional

connectivity;

 basic firmware verification to make sure that the processor is fetching the code and the firmware

execution is happening in the expected manner;

 running advanced validations such as memory validations, signal integrity validation, etc.

THE EMBEDDED SYSTEM DEVELOPMENT ENVIRONMENT
The embedded system development environment consists of –

 Development Computer (PC) or Host – acts as the heart of the development environment

 Integrated Development Environment (IDE) Tool – for embedded firmware development and

debugging

 Electronic Design Automation (IDA) Tool – for embedded hardware design

 An emulator hardware – for debugging the target board

 Signal sources (like CRO, Multimeter, Logic Analyzer, etc.)

 Target hardware.

THE INTEGRATED DEVELOPMENT ENVIRONMENT (IDE):

In embedded system development context, Integrated Development Environment (IDE) stands for an

integrated environment for developing and debugging the target processor specific embedded firmware.

IDE is a software package which bundles –

 a “Text Editor (Source Code Editor)”,

 “Cross-complier (for cross platform development and complier for same platform development)”,

 “Linker”, and

 a “Debugger”.

Some IDEs may provide –

 interface to target board emulators,

 target processor‟s/ controller‟s Flash memory programmer, etc.

IDE may be command line based or GUI based.

NOTE: The Keil µVision IDE & An Overview of IDEs – lest as an exercise/ self study topic.

DISASSEMBLER/ DECOMPLIER:

Disassembler is a utility program which converts machine codes into target processor specific Assembly

codes/ instructions. The process of converting machine codes into Assembly code is known as

'Disassembling'. In operation, disasseri1bling is complementary to assembling/ cross-assembling.

18CS44 MICROCONTROLLER AND EMBEDDED SYSTEMS

Decompiler is the utility program for translating machine codes into corresponding high level language

instructions. Decompiler performs the reverse operation of compiler/ cross-compiler.

The disassemblers/ decompilers for different family of processors/ controllers are different.

Disassemblers/ Decompilers are deployed in reverse engineering. Reverse engineering is the process of

revealing the technology behind the working of a product. Reverse engineering in Embedded Product

development is employed to find out the secret behind the working of popular proprietary products.

Disassemblers /decompilers help the reverse engineering process by translating the embedded firmware

into Assembly/ high level language instructions.

Disassemblers/ Decompilers are powerful tools for analyzing the presence of malicious codes (virus

information) in an executable image. Disassemblers/ Decompilers are available as either freeware tools

readily available for free download from internet or as commercial tools.

It is not possible for a disassembler/ decompiler to generate an exact replica of the original assembly

code/ high level source code in terms of the symbolic constants and comments used. However

disassemblers/ decompilers generate a source code which is somewhat matching to the original source

code from which the binary code is generated.

SIMULATORS, EMULATORS AND DEBUGGING:

Simulators and emulators are two important tools used in embedded system development.

 Simulator is a software tool use for simulating the various conditions for checking the

functionality of the application firmware. The Integrated Development Environment (IDE) itself

will be providing simulator support and they help in debugging the firmware for checking its

required functionality. In certain scenarios, simulator refers to a soft model (GUI model) of the

embedded product.

o For example, if the product under development is a handheld device, to test the

functionalities of the various menu and user interfaces, a soft form model of the product

with all UI as given in the end product can be developed in software. Soft phone is an

example for such a simulator.

 Emulator is hardware device which emulates the functionalities of the target device and allows

real time debugging of the embedded firmware in a hardware environment.

Simulators:

Simulators simulate the target hardware and the firmware execution can be inspected using simulators.

The features of simulator based debugging are listed below.

1. Purely software based

2. Doesn't require a real target system

3. Very primitive (Lack of featured I/O support. Everything is a simulated one)

18CS44 MICROCONTROLLER AND EMBEDDED SYSTEMS

4. Lack of Real-time behavior.
Advantages of Simulator Based Debugging: Simulator based debugging techniques are simple

and straightforward .The major advantages of simulator based firmware debugging techniques are

explained below.

 No Need for Original Target Board: Simulator based debugging technique is purely software

oriented. IDE's software support simulates the CPU of the target board. User only needs to know

about the memory map of various devices within the target board and the firmware should be

written on the basis of it. Since the real hardware is not required, firmware development can start

well in advance immediately after the device interface and memory maps are finalized. This saves

development time.

 Simulate I/O Peripherals: Simulator provides the option to simulate various I/O peripherals.

Using simulator's I/O support you can edit the values for I/O registers and can be used as the

input/ output value in the firmware execution. Hence it eliminates the need for connecting I/O

devices for debugging the firmware.

 Simulates Abnormal Conditions: With simulator's simulation support you can input any desired

value for any parameter during debugging the firmware and can observe the control flow of

firmware. It really helps the developer in simulating abnormal operational environment for

firmware and helps the firmware developer to study the behavior of the firmware under abnormal

input conditions.

Limitations of Simulator Based Debugging: Though simulation based firmware debugging

technique is very helpful in embedded applications, they possess certain limitations and we cannot fully

rely on the simulator-based firmware debugging. Some of the limitations of simulator-based debugging

are explainedbelow:

 Deviation from Real Behavior: Simulation-based firmware debugging is always carried out in a

development environment where the developer may not be able to debug the firmware under all

possible combinations of input. Under certain operating conditions, we may get some particular

result and it need not be the same when the firmware runs in a production environment.

 Lack of Real Timeliness: The major limitation of simulator based debugging is that it is not real-

time in behavior. The debugging is developer driven and it is no way capable of creating a real

time behavior. Moreover in a real application the I/O condition may be varying or unpredictable.

Simulation goes for simulating those conditions for known values.

18CS44 MICROCONTROLLER AND EMBEDDED SYSTEMS

Emulators and Debuggers:

Debugging in embedded application is the process of diagnosing the firmware execution, monitoring the

target processor's registers and memory, while the firmware is running and checking the signals from

various buses of the embedded hardware. Debugging process in embedded application is broadly

classified into two, namely; hardware debugging and firmware debugging.

 Hardware debugging deals with the monitoring of various bus signals and checking the status

lines of the target hardware.

 Firmware debugging deals with examining the firmware execution, execution flow, changes to

various CPU registers and status registers on execution of the firmware to ensure that the

firmware is running as per the design.

Firmware debugging is performed to figure out the bug or the error in the firmware which creates the

unexpected behavior. The following section describes the improvements over firmware debugging

starting from the most primitive type of debugging to the most sophisticated On Chip Debugging (OCD):

 Incremental EEPROM Burning Technique: This is the most primitive type of firmware

debugging technique where the code is separated into different functional code units. Instead of

burning the entire code into the EEPROM chip at once, the code is burned in incremental order,

where the code corresponding to all functionalities are separately coded, cross-compiled and

burned into the chip one by one.

 Inline Breakpoint Based Firmware Debugging: Inline breakpoint based debugging is another

primitive method of firmware debugging. Within the firmware where you want to ensure that

firmware execution is reaching up to a specified point, insert an inline debug code immediately

after the point. The debug code is a printf() function which prints a string given as per the

firmware. You can insert debug codes (printf()) commands at each point where you want to

ensure the firmware execution is covering that point. Cross-compile the source code with the

debug codes embedded within it. Burn the corresponding hex file into the EEPROM.

 Monitor Program Based Firmware Debugging: Monitor program based firmware debugging is

the first adopted invasive method for firmware debugging (see the following Figure). In this

approach a monitor program which acts as a supervisor is developed. The monitor program

controls the downloading of user code into the code memory, inspects and modifies register/

memory locations; allows single stepping of source code, etc. The monitor program implements

the debug functions as per a pre-defined command set from the debug application interface. The

18CS44 MICROCONTROLLER AND EMBEDDED SYSTEMS

monitor program always listens to the serial port of the target device and according to the

command received from the serial interface it performs command specific actions like firmware

downloading, memory inspection/ modification, firmware single stepping and sends the debug

information (various register and memory contents) back to the main debug program running on

the development PC, etc.

o The first step in any monitor program development is determining a set of commands for

performing various operations like firmware downloading, memory/ register inspection/

modification, single stepping, etc. The entire code stuff handling the command reception

and corresponding action implementation is known as the "monitor program". The most

common type of interface used between target board and debug application is RS-232C

Serial interface.

o The monitor program contains the following set of minimal features:
1. Command set interface to establish communication with the debugging

application

2. Firmware download option to code memory

3. Examine and modify processor registers and working memory (RAM)

4. Single step program execution

5. Set breakpoints in firmware execution

6. Send debug information to debug application running on host machine.

 In Circuit Emulator (ICE) Based Firmware Debugging: The terms 'Simulator' and 'Emulator'

are little bit confusing and sounds similar. Though their basic functionality is the same-"Debug

the target firmware", the way in which they achieve this functionality is totally different. The

simulator 'simulates' the target board CPU and the emulator 'emulates' the target board CPU.

18CS44 MICROCONTROLLER AND EMBEDDED SYSTEMS

o 'Simulator' is a software application that precisely duplicates (mimics) the target CPU
and simulates the various features and instructions supported by the target CPU.

o 'Emulator' is a self-contained hardware device which emulates the target CPU. The

emulator hardware contains necessary emulation logic and it is hooked to the debugging

application running on the development PC on one end and connects to the target board

through some interface on the other end.

o The Emulator POD (see the following Figure) forms the heart of any emulator system
and it contains the following functional units.

o Emulation Device: is a replica of the target CPU which receives various signals from the

target board through a device adaptor connected to the target board and performs the

execution of firmware under the control of debug commands from the debug application.

o Emulation Memory: is the Random Access Memory (RAM) incorporated in the Emulator

device. It acts as a replacement to the target board's EEPROM where the code is

supposed to be downloaded after each firmware modification. Hence the original

EEPROM memory is emulated by the RAM of emulator. This is known as 'ROM

Emulation'. ROM emulation eliminates the hassles of ROM burning and it offers the

benefit of infinite number of reprogramming.

o Emulator Control Logic: is the logic circuits used for implementing complex hardware

breakpoints, trace buffer trigger detection, trace buffer control, etc. Emulator control

logic circuits are also used for implementing logic analyzer functions in advanced

emulator devices. The 'Emulator POD' is connected to the target board through a 'Device

adaptor' and signal cable.

o Device Adaptors: act as an interface between the target board and emulator POD. Device
adaptors are normally pin-to-pin compatible sockets which can be inserted/ plugged into

the target board for routing the various signals from pins assigned for the target

18CS44 MICROCONTROLLER AND EMBEDDED SYSTEMS

processor. The device adaptor is usually connected to the emulator POD using ribbon

cables.

 On Chip Firmware Debugging (OCD): Advances in semiconductor technology has brought out

new dimensions to target firmware debugging. Today almost all processors/controllers in•

corporate built in debug modules called On Chip Debug (OCD) support. Though OCD adds

silicon complexity and cost factor, from a developer perspective it is a very good feature

supporting fast and efficient firmware debugging. The On Chip Debug facilities integrated to the

processor/ controller are chip vendor dependent and most of them are proprietary technologies

like Background Debug Mode (BDM), OnCE, etc.

TARGET HARDWARE DEBUGGING:

Even though the firmware is bug free and everything is intact in the board, your embedded product need

not function as per the expected behavior in the first attempt for various hardware related reasons like dry

soldering of components, missing connections in the PCB due to any un-noticed errors in the PCB layout

design, misplaced components, signal corruption due to noise, etc. The only way to sort out these issues

and figure out the real problem creator is debugging the target board.

Hardware debugging is not similar to firmware debugging. Hardware debugging involves the monitoring

of various signals of the target board (address/ data lines, port pins, etc.), checking the inter connection

among various components, circuit continuity checking, etc.

The various hardware debugging tools used in Embedded Product Development are explained below.

Magnifying Glass (Lens):

You might have noticed watch repairer wearing a small magnifying glass while engaged -in repairing a

watch. They use the magnifying glass to view the minute components inside the watch in an enlarged

manner so that they can easily work with them.

Similar to a watch repairer, magnifying glass is the primary hardware debugging tool for an embedded

hardware debugging professional.

A magnifying glass is a powerful visual inspection tool. With a magnifying glass (lens), the surface of the

target board can be examined thoroughly for dry soldering of components, missing components, improper

placement of components, improper soldering, track (PCB connection) damage, short of tracks, etc.

Nowadays high quality magnifying stations are available for visual inspection.

18CS44
Multimeter:

MICROCONTROLLER AND EMBEDDED SYSTEMS

A multimeter is used for measuring various electrical quantities like voltage (Both AC and DC), current

(DC as well as AC), resistance, capacitance, continuity checking, transistor checking, cathode and anode

identification of diode, etc.

Any multimeter will work over a specific range for each measurement. A multimeter is the most valuable

tool in the tool kit of an embedded hardware developer. It is the primary debugging tool for physical

contact based hardware debugging and almost all developers start debugging the hardware with it.

Digital CRO:

Cathode Ray Oscilloscope (CRO) is a little more sophisticated tool compared to a multimeter. CRO is

used for waveform capturing and analysis, measurement of signal strength, etc. By connecting the point

under observation on the target board to the Channels of the Oscilloscope, the waveforms can be captured

and analyzed for expected behavior.

CRO is a very good tool in analyzing interference noise in the power supply line and other signal lines.

Monitoring the crystal oscillator signal from the target board is a typical example of the usage of CRO for

waveform capturing and analysis in target board debugging.

CROs are available in both analog and digital versions. Though Digital CROs are costly, feature-wise

they are best suited for target board debugging applications. Digital CROs are available for high

frequency support and they also incorporate modem techniques for recording waveform over a period of

time, capturing waves on the basis of a configurable event (trigger) from the target board.

Various measurements like phase, amplitude, etc. are also possible with CROs. Tektronix, Agilent,

Philips, etc. are the manufacturers of high precision good quality digital CROs.

Logic Analyzer:

A logic analyzer is the big brother of digital CRO. Logic analyzer is used for capturing digital data (logic

1 and 0) from a digital circuitry whereas CRO is employed in capturing all kinds of waves including logic

signals. Another major limitation of CRO is that the total number of logic signals/ waveforms that can be

captured with a CRO is limited to the number of channels.

A logic analyzer contains special connectors and clips which can be attached to the target board for

capturing digital data. In target board debugging applications, a logic analyzer captures the states of

various port pins, address bus and data bus of the target processor/ controller, etc.

Logic analyzers give an exact reflect on of what happens when a particular line of firmware is running.

This is achieved by capturing the address line logic and data line logic of target hardware. Most modem

logic analyzers contain provisions for storing captured data, selecting a desired region of the captured

waveform, zooming selected region of the captured waveform, etc. Tektronix, Agilent, etc. are the giants

in the logic analyzer market.

18CS44
Function Generator:

Function generator is not a debugging tool. It is a input signal simulator tool. A function generator is

capable of producing various periodic waveforms like sine wave, square wave, saw-tooth wave, etc. with

different frequencies and amplitude.

Sometimes the target board may require some kind of periodic waveform with a particular frequency as

input to some part of the board. Thus, in a debugging environment, the function generator serves the

purpose of generating and supplying required signals.

BOUNDARY SCAN:

As the complexity of the hardware increase, the number of chips present in the board and the

interconnection among them may also increase. The device packages used in the PCB become miniature

to reduce the total board space occupied by them and multiple layers may be required to route the

interconnections among the chips. With miniature device packages and multiple layers for the PCB it will

be very difficult to debug the hardware using magnifying glass, multimeter, etc. to check the

interconnection among the various chips.

Boundary scan is a technique used for testing the interconnection among the various chips, which support

JTAG interface, present in the board. Chips which support boundary scan associate a boundary scan cell

with each pin of the device.

A JTAG port contains the five signal lines, namely, TDI, TDO, TCK, TRST and TMS form the Test

Access Port (TAP) for a JTAG supported chip. Each device will have its own TAP. The PCB also

contains a TAP for connecting the JTAG signal lines to the external world.

A boundary scan path is formed inside the board by interconnecting the devices through JTAG signal

lines. The TDI pin of the TAP of the PCB is connected to the TDI pin of the first device.

The TDO pin of the first device is connected to the TDI pin of the second device. In this way all devices

are interconnected and the TDO pin of the last JTAG device is connected to the TDO pin of the TAP of

the PCB. The clock line TCK and the Test Mode Select (TMS) line of the devices are connected to the

clock line and Test mode select line of the Test Access Port of the PCB respectively. This forms a

boundary scan path.

The following Figure illustrates the same.

Question Bank

o Explain basics of operating system?

2..Explain in detail task, process and thread?

3.Explain multitasking concept with an example.

4.What is scheduling? Explain the various for scheduling algorithms in RTOS?

5. Explain task communication?

6. Differentiate between thread and process?

7.Explain task synchronization?

8.What is semaphore? Explain various types of semaphores in RTOS?

9.Explain how to choose an RTOS in Embedded system?

10 Explain integration of hardware and firmware design of embedded system.

11 Explain detail Embedded system development environment?

	MODULE – 5
	RTOS-BASED EMBEDDED SYSTEM DESIGN
	OPERATING SYSTEM (OS) BASICS:

	Application Programming Interface (API)
	TYPES OF OPERATING SYSTEMS:
	General Purpose Operating System (GPOS):
	Real Time Operating System (RTOS):

	TASKS, PROCESSES AND THREADS:
	Threads:
	Types of Multitasking:

	TASK COMMUNICATION:
	IPC Mechanism - Shared Memory:
	IPC Mechanism - Message Passing:

	 TASK SYNCHRONIZATION:
	Task Communication/ Synchronization Issues:
	oConditions Favoring Deadlock:
	Task Synchronization Techniques:

	HOW TO CHOOSE AN RTOS:
	Functional Requirements:
	Non-functional Requirements:

	INTREGRATION AND TESTING OF EMBEDDED HARDWARE AND
	INTEGRATION OF HARDWARE AND FIRMWARE:
	Out-of-Circuit Programming:
	In System Programming (ISP):
	In Application Programming (IAP):
	Use of Factory Programmed Chip:
	Firmware Loading for Operating System Based Device

	THE EMBEDDED SYSTEM DEVELOPMENT ENVIRONMENT
	THE INTEGRATED DEVELOPMENT ENVIRONMENT (IDE):
	DISASSEMBLER/ DECOMPLIER:
	SIMULATORS, EMULATORS AND DEBUGGING:
	Simulators:
	Emulators and Debuggers:

	TARGET HARDWARE DEBUGGING:
	Magnifying Glass (Lens):
	Digital CRO:
	Logic Analyzer:

	BOUNDARY SCAN:

