
Introduction to Python Programming (BPLCK105B) Module 2

Prof. Manjusha, Asst Prof., Dept of CSE, SVIT Page 1

 CHAPTER 1: LISTS

1. The List Data Type

2. Working with Lists

3. Augmented Assignment Operators

4. Methods

5. Example Program: Magic 8 Ball with a List

6. List-like Types: Strings and Tuples

7. References

1.1 The List Data Type

➢ A list is a value that contains multiple values in an ordered sequence.

➢ A list value looks like this: ['cat', 'bat', 'rat', 'elephant'].

➢ A list begins with an opening square bracket and ends with a closing square bracket,

[].

➢ Values inside the list are also called items and are separated with commas.

➢ ❶ is still assigned only one value: the list value(contains

multiple values).

➢

 Getting Individual Values in a List with Indexes

➢ Say you have the list ['cat', 'bat', 'rat', 'elephant'] stored in a variable named spam.

➢ The Python code spam[0] would evaluate to 'cat', and spam[1] would evaluate to 'bat',

and so on.

Introduction to Python Programming (BPLCK105B) Module 2

Prof. Manjusha, Asst Prof., Dept of CSE, SVIT Page 2

➢ The first value in the list is at index 0, the second value is at index 1, and the third value

is at index 2, and so on.

➢ For example, type the following expressions into the interactive shell.

➢ The expression 'Hello ' + spam[0] evaluates to 'Hello ' + 'cat' because spam[0] evaluates

to the string 'cat'. This expression in turn evaluates to the string value 'Hello cat'.

➢ If we use an index that exceeds the number of values in the list value then, python gives

IndexError.

Introduction to Python Programming (BPLCK105B) Module 2

Prof. Manjusha, Asst Prof., Dept of CSE, SVIT Page 3

➢ Indexes can be only integer values, not floats. The following example will cause a

TypeError error:

➢ Lists can also contain other list values. The values in these lists of lists can be

accessed using multiple indexes.

➢ The first index dictates which list value to use, and the second indicates the value

within the list value. Ex, spam[0][1] prints 'bat', the second value in the first list.

Negative Indexes

➢ We can also use negative integers for the index. The integer value -1 refers to the last

index in a list, the value -2 refers to the second-to-last index in a list, and so on.

Introduction to Python Programming (BPLCK105B) Module 2

Prof. Manjusha, Asst Prof., Dept of CSE, SVIT Page 4

Getting Sublists with Slices

➢ An index will get a single value from a list, a slice can get several values from a list,

in the form of a new list.

➢ A slice is typed between square brackets, like an index, but it has two integers

separated by a colon.

➢ Difference between indexes and slices.

• spam[2] is a list with an index (one integer).

• spam[1:4] is a list with a slice (two integers).

➢ In a slice, the first integer is the index where the slice starts. The second integer is the

index where the slice ends (but will not include the value at the second index).

➢ ➢ As a shortcut, we can leave out one or both of the indexes on either side of the

colon in the slice.

o Leaving out the first index is the same as using 0, or the beginning of the list.

o Leaving out the second index is the same as using the length of the list, which

will slice to the end of the list.

Introduction to Python Programming (BPLCK105B) Module 2

Prof. Manjusha, Asst Prof., Dept of CSE, SVIT Page 5

Getting a List’s Length with len()

➢ The len() function will return the number of values that are in a list value.

Changing Values in a List with Indexes

➢ We can also use an index of a list to change the value at that index.

➢ Ex: spam[1] = 'aardvark' means “Assign the value at index 1 in the list spam to the

string 'aardvark'.”

List Concatenation and List Replication

➢ The + operator can combine two lists to create a new list value in the same way it

combines two strings into a new string value.

➢ The * operator can also be used with a list and an integer value to replicate the list.

Introduction to Python Programming (BPLCK105B) Module 2

Prof. Manjusha, Asst Prof., Dept of CSE, SVIT Page 6

Removing Values from Lists with del Statements

➢ The del statement will delete values at an index in a list.

➢ The del statement can also be used to delete a variable After deleting if we try to use

the variable, we will get a NameError error because the variable no longer exists.

➢ In practice, you almost never need to delete simple variables.

➢ The del statement is mostly used to delete values from lists.

1.2 Working with Lists

➢ When we first begin writing programs, it’s tempting to create many individual

variables to store a group of similar values.

➢ Which is bad way to write code because it leads to have a duplicate code in the

program.

Introduction to Python Programming (BPLCK105B) Module 2

Prof. Manjusha, Asst Prof., Dept of CSE, SVIT Page 7

➢ Instead of using multiple, repetitive variables, we can use a single variable that

contains a list value.

➢ For Ex: The following program uses a single list and it can store any number of cats

that the user types in.

➢ Program:

Output:

Introduction to Python Programming (BPLCK105B) Module 2

Prof. Manjusha, Asst Prof., Dept of CSE, SVIT Page 8

Using for Loops with Lists

➢ A for loop repeats the code block once for each value in a list or list-like value.

Program

Output:

➢ A common Python technique is to use range (len(someList)) with a for loop to iterate

over the indexes of a list.

➢ The code in the loop will access the index (as the variable i), the value at that index (as

supplies[i]) and range(len(supplies)) will iterate through all the indexes of supplies, no

matter how many items it contains.

The in and not in Operators

➢ We can determine whether a value is or isn’t in a list with the in and not in operators.

➢ in and not in are used in expressions and connect two values: a value to look for in a

list and the list where it may be found and these expressions will evaluate to a Boolean

value.

Introduction to Python Programming (BPLCK105B) Module 2

Prof. Manjusha, Asst Prof., Dept of CSE, SVIT Page 9

➢ The following program lets the user type in a pet name and then checks to see whether

the name is in a list of pets.

Program

Output

The Multiple Assignment Trick

➢ The multiple assignment trick is a shortcut that lets you assign multiple variables with

the values in a list in one line of code.

➢ Instead of left-side program we could type the right-side program to assignment

multiple variables but the number of variables and the length of the list must be exactly

equal, or Python will give you a ValueError:

Introduction to Python Programming (BPLCK105B) Module 2

Prof. Manjusha, Asst Prof., Dept of CSE, SVIT Page 10

1.3 Augmented Assignment Operators

➢ When assigning a value to a variable, we will frequently use the variable itself

➢ Instead of left-side program we could use right-side program i.e., with the augmented

assignment operator += to do the same thing as a shortcut.

➢ The Augmented Assignment Operators are listed in the below table:

➢ The += operator can also do string and list concatenation, and the *= operator can do

string and list replication.

Introduction to Python Programming (BPLCK105B) Module 2

Prof. Manjusha, Asst Prof., Dept of CSE, SVIT Page 11

1.4 Methods

➢ A method is same as a function, except it is “called on” a value.

➢ The method part comes after the value, separated by a period.

➢ Each data type has its own set of methods.

➢ The list data type has several useful methods for finding, adding, removing, and

manipulating values in a list.

Finding a Value in a List with the index() Method

➢ List values have an index() method that can be passed a value, and if that value exists

in the list, the index of the value is returned. If the value isn’t in the list, then Python

produces a ValueError error.

➢ When there are duplicates of the value in the list, the index of its first appearance is

returned.

Adding Values to Lists with the append() and insert() Methods

➢ To add new values to a list, use the append() and insert() methods.

➢ The append() method call adds the argument to the end of the list.

Introduction to Python Programming (BPLCK105B) Module 2

Prof. Manjusha, Asst Prof., Dept of CSE, SVIT Page 12

➢ The insert() method can insert a value at any index in the list. The first argument to

insert() is the index for the new value, and the second argument is the new value to be

inserted.

➢ Methods belong to a single data type.

➢ The append() and insert() methods are list methods and can be called only on list values,

not on other values such as strings or integers.

Removing Values from Lists with remove()

➢ The remove() method is passed the value to be removed from the list it is called on.

➢ Attempting to delete a value that does not exist in the list will result in a ValueError

error.

Introduction to Python Programming (BPLCK105B) Module 2

Prof. Manjusha, Asst Prof., Dept of CSE, SVIT Page 13

➢ If the value appears multiple times in the list, only the first instance of the value will

be removed.

➢ The del statement is good to use when you know the index of the value you want to

remove from the list. The remove() method is good when you know the value you

want to remove from the list.

Sorting the Values in a List with the sort() Method

➢ Lists of number values or lists of strings can be sorted with the sort() method.

➢ You can also pass True for the reverse keyword argument to have sort() sort the

values in reverse order.

➢ There are three things you should note about the sort() method.

o First, the sort() method sorts the list in place; don’t try to return value by

writing code like spam = spam.sort().

o Second, we cannot sort lists that have both number values and string values in

them.

Introduction to Python Programming (BPLCK105B) Module 2

Prof. Manjusha, Asst Prof., Dept of CSE, SVIT Page 14

o Third, sort() uses “ASCIIbetical order(upper case)” rather than actual alphabetical

order(lower case) for sorting strings.

➢ If we need to sort the values in regular alphabetical order, pass str.lower for the key

keyword argument in the sort() method call.

1.5 Example Program: Magic 8 Ball with a List

➢ We can write a much more elegant version of the Magic 8 Ball program. Instead of

several lines of nearly identical elif statements, we can create a single list.

➢ The expression you use as the index into messages: random .randint (0, len(messages)

- 1). This produces a random number to use for the index, regardless of the size of

messages. That is, you’ll get a random number between 0 and the value of

len(messages) - 1.

Introduction to Python Programming (BPLCK105B) Module 2

Prof. Manjusha, Asst Prof., Dept of CSE, SVIT Page 15

Exceptions to Indentation Rules in Python

➢ The amount of indentation for a line of code tells Python what block it is in.

➢ lists can actually span several lines in the source code file. The indentation of these

lines do not matter; Python knows that until it sees the ending square bracket, the list is

not finished.

➢ We can also split up a single instruction across multiple lines using the \ line

continuation character at the end.

1.6 List-like Types: Strings and Tuples

➢ Lists aren’t the only data types that represent ordered sequences of values.

➢ Ex, we can also do these with strings: indexing; slicing; and using them with for

loops, with len(), and with the in and not in operators.

Introduction to Python Programming (BPLCK105B) Module 2

Prof. Manjusha, Asst Prof., Dept of CSE, SVIT Page 16

Mutable and Immutable Data Types

String

➢ However, a string is immutable: It cannot be changed. Trying to reassign a single

character in a string results in a TypeError error.

➢ The proper way to “mutate” a string is to use slicing and concatenation to build a new

string by copying from parts of the old string.

➢ We used [0:7] and [8:12] to refer to the characters that we don’t wish to replace. Notice

that the original 'Zophie a cat' string is not modified because strings are immutable.

List

➢ A list value is a mutable data type: It can have values added, removed, or changed.

➢ The list value in eggs isn’t being changed here; rather, an entirely new and different list

value ([4, 5, 6]) is overwriting the old list value ([1, 2, 3]).

Introduction to Python Programming (BPLCK105B) Module 2

Prof. Manjusha, Asst Prof., Dept of CSE, SVIT Page 17

Figure: When eggs = [4, 5, 6] is executed, the contents of eggs are replaced with a

new list value.

➢ If we want to modify the original list in eggs to contain [4, 5, 6], you would have to

delete the items in that and then add items to it.

Figure: The del statement and the append() method modify the same list value in place.

Introduction to Python Programming (BPLCK105B) Module 2

Prof. Manjusha, Asst Prof., Dept of CSE, SVIT Page 18

The Tuple Data Type

➢ The tuple data type is almost identical to the list data type, except in two ways.

➢ First, tuples are typed with parentheses, (and), instead of square brackets, [and].

➢ Second, benefit of using tuples instead of lists is that, because they are immutable and

their contents don’t change. Tuples cannot have their values modified, appended, or

removed.

➢ If you have only one value in your tuple, you can indicate this by placing a trailing

comma after the value inside the parentheses.

Converting Types with the list() and tuple() Functions

➢ The functions list() and tuple() will return list and tuple versions of the values passed

to them.

Introduction to Python Programming (BPLCK105B) Module 2

Prof. Manjusha, Asst Prof., Dept of CSE, SVIT Page 19

References

➢ As , variables store strings and integer values.

➢ We assign 42 to the spam variable, and then we copy the value in spam and assign it to the

variable cheese. When we later change the value in spam to 100, this doesn’t affect the

value in cheese. This is because spam and cheese are different variables that store different

values.

➢ But lists works differently. When we assign a list to a variable, we are actually assigning

a list reference to the variable. A reference is a value that points to some bit of data, and

a list reference is a value that points to a list.

➢ When we create the list ❶, we assign a reference to it in the spam variable. But the

next line copies only the list reference in spam to cheese, not the list value itself. This

means the values stored in spam and cheese now both refer to the same list.

➢ There is only one underlying list because the list itself was never actually copied. So

when we modify the first element of cheese, we are modifying the same list that spam

refers to.

➢ List variables don’t actually contain lists—they contain references to lists.

Introduction to Python Programming (BPLCK105B) Module 2

Prof. Manjusha, Asst Prof., Dept of CSE, SVIT Page 20

Figure: spam = [0, 1, 2, 3, 4, 5] stores a reference to a list, not the actual list.

➢ The reference in spam is copied to cheese. Only a new reference was created and

stored in cheese, not a new list.

Figure: spam = cheese copies the reference, not the list

➢ When we alter the list that cheese refers to, the list that spam refers to is also changed,

because both cheese and spam refer to the same list.

Figure: cheese[1] = 'Hello!' modifies the list that both variables refer to

➢ Variables will contain references to list values rather than list values themselves.

Introduction to Python Programming (BPLCK105B) Module 2

Prof. Manjusha, Asst Prof., Dept of CSE, SVIT Page 21

➢ But for strings and integer values, variables will contain the string or integer value.

➢ Python uses references whenever variables must store values of mutable data types,

such as lists or dictionaries. For values of immutable data types such as strings, integers,

or tuples, Python variables will store the value itself.

Passing References

➢ References are particularly important for understanding how arguments get passed to

functions.

➢ When a function is called, the values of the arguments are copied to the parameter

variables.

 Program Output

➢ when eggs() is called, a return value is not used to assign a new value to spam.

➢ Even though spam and someParameter contain separate references, they both refer to

the same list. This is why the append('Hello') method call inside the function affects the

list even after the function call has returned

The copy Module’s copy() and deepcopy() Functions

➢ If the function modifies the list or dictionary that is passed, we may not want these

changes in the original list or dictionary value.

➢ For this, Python provides a module named copy that provides both the copy() and

deepcopy() functions.

➢ copy(), can be used to make a duplicate copy of a mutable value like a list or

dictionary, not just a copy of a reference.

➢ Now the spam and cheese variables refer to separate lists, which is why only the list

in cheese is modified when you assign 42 at index 1.

➢ The reference ID numbers are no longer the same for both variables because the

variables refer to independent lists

Introduction to Python Programming (BPLCK105B) Module 2

Prof. Manjusha, Asst Prof., Dept of CSE, SVIT Page 22

Figure: cheese = copy.copy(spam) creates a second list that can be modified independently of

the first.

>>> import copy

>>> spam = ['A', 'B', 'C', 'D']

>>> cheese = copy.copy(spam)

>>> cheese[1] = 42

>>> spam

Output: ['A', 'B', 'C', 'D']

>>> cheese

Output: ['A', 42, 'C', 'D']

copy function

>>> import copy

>>> old_list = [[1, 1, 1], [2, 2, 2], [3, 3, 3]]

>>> new_list = copy.copy(old_list)

>>> old_list[1][0] = 'BB'

>>> print("Old list:", old_list)

>>> print("New list:", new_list)

>>> print(id(old_list))

>>> print(id(new_list))

Introduction to Python Programming (BPLCK105B) Module 2

Prof. Manjusha, Asst Prof., Dept of CSE, SVIT Page 23

Output:

Old list: [[1, 1, 1], ['BB', 2, 2], [3, 3, 3]]

New list: [[1, 1, 1], ['BB', 2, 2], [3, 3, 3]]

1498111334272

1498110961152

deepcopy() Function

>>> import copy

>>> old_list = [[1, 1, 1], [2, 2, 2], [3, 3, 3]]

>>> new_list = copy.deepcopy(old_list)

>>> old_list[1][0] = 'BB'

>>> print("Old list:", old_list)

>>> print("New list:", new_list)

>>> print(id(old_list))

>>> print(id(new_list))

Output

Old list: [[1, 1, 1], ['BB', 2, 2], [3, 3, 3]]

New list: [[1, 1, 1], [2, 2, 2], [3, 3, 3]]

1498111298880

1498111336064

Introduction to Python Programming (BPLCK105B) Module 2

Prof. Manjusha, Asst Prof., Dept of CSE, SVIT Page 24

CHAPTER2: DICTIONARIES AND STRUCTURING DATA

1. The Dictionary Data Type

2. Pretty Printing

3. Using Data Structures to Model Real-World Things.

2.1 The Dictionary Data Type

➢ A dictionary is a collection of many values. Indexes for dictionaries can use many

different data types, not just integers. Indexes for dictionaries are called keys, and a key

with its associated value is called a key-value pair. A dictionary is typed with braces,

{}.

➢ A dictionary is typed with braces, {}.

➢ This assigns a dictionary to the myCat variable. This dictionary’s keys are 'size', 'color',

and 'disposition'. The values for these keys are 'fat', 'gray', and 'loud', respectively. You

can access these values through their keys:

➢ Dictionaries can still use integer values as keys, but they do not have to start at 0 and

can be any number.

Dictionaries vs. Lists

➢ Unlike lists, items in dictionaries are unordered.

➢ The first item in a list named spam would be spam[0]. But there is no “first” item in a

dictionary. While the order of items matters for determining whether two lists are the

same, it does not matter in what order the key-value pairs are typed in a dictionary.

Introduction to Python Programming (BPLCK105B) Module 2

Prof. Manjusha, Asst Prof., Dept of CSE, SVIT Page 25

➢ Trying to access a key that does not exist in a dictionary will result in a KeyError

error message, much like a list’s “out-of-range” IndexError error message.

➢ We can have arbitrary values for the keys that allows us to organize our data in

powerful ways.

➢ Ex: we want to store data about our friends’ birthdays. We can use a dictionary with

the names as keys and the birthdays as values.

Program:

Introduction to Python Programming (BPLCK105B) Module 2

Prof. Manjusha, Asst Prof., Dept of CSE, SVIT Page 26

Output:

➢ We create an initial dictionary and store it in birthdays 1.

➢ We can see if the entered name exists as a key in the dictionary with the in keyword 2.

➢ If the name is in the dictionary, we access the associated value using square brackets 3;

if not, we can add it using the same square bracket syntax combined with the assignment

operator 4.

The keys(), values(), and items() Methods

➢ There are three dictionary methods that will return list-like values of the dictionary’s

keys, values, or both keys and values: keys(), values(), and items().

➢ Data types (dict_keys, dict_values, and dict_items, respectively) can be used in for

loops

➢ A for loop can iterate over the keys, values, or key-value pairs in a dictionary by using

keys(), values(), and items() methods.

➢ The values in the dict_items value returned by the items() method are tuples of the

key and value.

Introduction to Python Programming (BPLCK105B) Module 2

Prof. Manjusha, Asst Prof., Dept of CSE, SVIT Page 27

➢ If we want a true list from one of these methods, pass its list-like return value to the

list() function.

➢ The list(spam.keys()) line takes the dict_keys value returned from keys() and passes it

to list(), which then returns a list value of ['color', 'age'].

➢ We can also use the multiple assignment trick in a for loop to assign the key and value

to separate variables.

Checking Whether a Key or Value Exists in a Dictionary

➢ We can use the in and not in operators to see whether a certain key or value exists in

a dictionary

Introduction to Python Programming (BPLCK105B) Module 2

Prof. Manjusha, Asst Prof., Dept of CSE, SVIT Page 28

The get() Method

Dictionaries have a get() method that takes two arguments:

➢ The key of the value to retrieve and

➢ A fallback value to return if that key does not exist.

The setdefault() Method

➢ To set a value in a dictionary for a certain key only if that key does not already have a

value

➢ The setdefault() method offers a way to do this in one line of code.

➢ Setdeafault() takes 2 arguments:

o The first argument is the key to check for, and

o The second argument is the value to set at that key if the key does not

exist. If the key does exist, the setdefault() method returns the key’s value.

➢ The first time setdefault() is called, the dictionary in spam changes to {'color': 'black',

'age': 5, 'name': 'Pooka'}. The method returns the value 'black' because this is now the

value set for the key 'color'. When spam.setdefault('color', 'white') is called next, the

value for that key is not changed to 'white' because spam already has a key named 'color'.

Introduction to Python Programming (BPLCK105B) Module 2

Prof. Manjusha, Asst Prof., Dept of CSE, SVIT Page 29

Ex: program that counts the number of occurrences of each letter in a string.

➢ The program loops over each character in the message variable’s string, counting how

often each character appears.

➢ The setdefault() method call ensures that the key is in the count dictionary (with a

default value of 0), so the program doesn’t throw a KeyError error when

count[character] = count[character] + 1 is executed.

Output:

2.2 Pretty Printing

➢ Importing pprint module will provide access to the pprint() and pformat() functions that

will “pretty print” a dictionary’s values.

➢ This is helpful when we want a cleaner display of the items in a dictionary than what

print() provides and also it is helpful when the dictionary itself contains nested lists or

dictionaries..

Program: counts the number of occurrences of each letter in a string.

Introduction to Python Programming (BPLCK105B) Module 2

Prof. Manjusha, Asst Prof., Dept of CSE, SVIT Page 30

Output:

2.3 Using Data Structures to Model Real-World Things

A Tic-Tac-Toe Board

➢ A tic-tac-toe board looks like a large hash symbol (#) with nine slots that can each

contain an X, an O, or a blank. To represent the board with a dictionary, we can assign

each slot a string-value key as shown in below figure.

Figure: The slots of a tic-tactoe board with their corresponding keys

Introduction to Python Programming (BPLCK105B) Module 2

Prof. Manjusha, Asst Prof., Dept of CSE, SVIT Page 31

➢ We can use string values to represent what’s in each slot on the board: 'X', 'O', or ' ' (a

space character).

➢ To store nine strings. We can use a dictionary of values for this.

o The string value with the key 'top-R' can represent the top-right corner,

o The string value with the key 'low-L' can represent the bottom-left corner,

o The string value with the key 'mid-M' can represent the middle, and so on.

➢ Store this board-as-a-dictionary in a variable named theBoard.

➢ The data structure stored in the theBoard variable represents the tic-tactoe board in the

below Figure.

Figure: An empty tic-tac-toe board

➢ Since the value for every key in theBoard is a single-space string, this dictionary

represents a completely clear board. If player X went first and chose the middle space,

you could represent that board with this dictionary as shown below:

Figure: A first move

➢ A board where player O has won by placing Os across the top might look like this:

Introduction to Python Programming (BPLCK105B) Module 2

Prof. Manjusha, Asst Prof., Dept of CSE, SVIT Page 32

➢ The data structure in theBoard now represents tic-tac-toe board in the below Figure.

Figure: Player O wins.

➢ The player sees only what is printed to the screen, not the contents of variables.

➢ The tic-tac-toe program is updated as below.

Output:

➢ The printBoard() function can handle any tic-tac-toe data structure you pass it.

Introduction to Python Programming (BPLCK105B) Module 2

Prof. Manjusha, Asst Prof., Dept of CSE, SVIT Page 33

Program

Output:

➢ Now we created a data structure to represent a tic-tac-toe board and wrote code in

printBoard() to interpret that data structure, we now have a program that “models” the

tic-tac-toe board.

➢ Program: allows the players to enter their moves.

Introduction to Python Programming (BPLCK105B) Module 2

Prof. Manjusha, Asst Prof., Dept of CSE, SVIT Page 34

Output:

Introduction to Python Programming (BPLCK105B) Module 2

Prof. Manjusha, Asst Prof., Dept of CSE, SVIT Page 35

Nested Dictionaries and Lists

➢ We can have program that contains dictionaries and lists which in turn contain other

dictionaries and lists.

➢ Lists are useful to contain an ordered series of values, and dictionaries are useful for

associating keys with values.

➢ Program: which contains nested dictionaries in order to see who is bringing what to a

picnic

 .

➢ Inside the totalBrought() function, the for loop iterates over the keyvalue pairs in

guests 1.

➢ Inside the loop, the string of the guest’s name is assigned to k, and the dictionary of

picnic items they’re bringing is assigned to v.

➢ If the item parameter exists as a key in this dictionary, it’s value (the quantity) is

added to numBrought 2.

➢ If it does not exist as a key, the get() method returns 0 to be added to numBrought.

Output:

